
Standards for Efficient Cryptography

SEC 4: Elliptic Curve Qu-Vanstone Implicit Certificate
Scheme (ECQV)

Certicom Research

Contact: Eoin Buckley (mbuckley@blackberry.com)

April 3, 2014
Version (Draft) 1.2

c©2014 Certicom Corp.

License to copy this document is granted provided it is identified as “Standards for Efficient

Cryptography 4 (SEC4)”, in all material mentioning or referencing it.

SEC 4 Ver. (Draft) 1.2

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Aim . 1

1.3 Compliance . 1

1.4 Document Evolution . 1

1.5 Intellectual Property . 1

2 Cryptographic Components 3

2.1 Security Levels . 3

2.2 Hash Functions . 3

2.3 Hashing to Integers Modulo n . 4

2.4 Random Number Generation . 5

2.5 Elliptic Curve Domain Parameter Generation and Validation 5

3 ECQV Implicit Certificate Scheme 5

3.1 Overview . 5

3.2 Prerequisites: ECQV Setup . 6

3.2.1 Certificate Encoding Methods . 8

3.3 Certificate Request: Cert Request . 8

3.4 Certificate Generation Process: Cert Generate . 9

3.5 Certificate Public Key Extraction Process: Cert PK Extraction 10

3.6 Processing the Response to a Cert Request: Cert Reception 11

3.7 ECQV Self-Signed Certificate Generation Scheme 11

3.8 ECQV Self-Signed Implicit Certificate Public Key Extraction 12

A Glossary 14

A.1 Terms . 14

A.2 Acronyms . 14

A.3 Notation . 15

B Commentary 16

C Representation of ECQV Certificate Structures 20

Contents Page i of iii

SEC 4 Ver. (Draft) 1.2

C.1 Fixed-Length Fields . 20

C.2 Two ASN.1 Encodings: Minimal and X.509-Compliant 21

C.3 Alternative ASN.1 Encoding: The M2M Format . 27

D References 32

Page ii of iii Contents

SEC 4 Ver. (Draft) 1.2

List of Figures

1 Figure . 7

List of Figures Page iii of iii

SEC 4 Ver. (Draft) 1.2

1 Introduction

1.1 Overview

This document specifies the Elliptic Curve Qu-Vanstone implicit certificate scheme (ECQV). The
ECQV implicit certificate scheme is intended as a general purpose certificate scheme for applica-
tions within computer and communications systems. It is particularly well suited for application
environments where resources such as bandwidth, computing power and storage are limited. ECQV
provides a more efficient alternative to traditional certificates.

1.2 Aim

The aim of this document is to facilitate deployment of the ECQV implicit certificate scheme.

1.3 Compliance

Implementations may claim compliance with the cryptographic schemes specified in this document
provided the external interface (input and output) to the schemes is equivalent to the interface
specified here. Internal computations may be performed as specified here, or may be performed
via an equivalent sequence of operations.

Note that this compliance definition implies that conformant implementations must perform all
the cryptographic checks included in the scheme specifications in this document. This is important
because the checks are essential for security.

1.4 Document Evolution

This document will be reviewed at least every five years to ensure it remains up to date with
cryptographic advances.

Additional intermittent reviews may also be performed from time-to-time as deemed necessary by
the Standards for Efficient Cryptography Group.

External normative standards contain provisions, which, though referenced in this document, con-
stitute provisions of this standard. At the time of publication, the versions indicated were valid. All
standards are subject to revision, and parties to agreements based on this standard are encouraged
to investigate the possibility of applying the most recent versions of the standards indicated below.

1.5 Intellectual Property

The reader’s attention is called to the possibility that compliance with this document may require
use of inventions covered by patent rights. By publication of this document, no position is taken
with respect to the validity of claims or of any patent rights in connection therewith. The patent
holder(s) may have filed with the SECG a statement of willingness to grant a license under these

§1 Introduction Page 1 of 32

1.5 Intellectual Property SEC 4 Ver. (Draft) 1.2

rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain
such a license. Additional details may be obtained from the patent holder(s) and from the SECG
web site, www.secg.org.

Page 2 of 32 §1 Introduction

SEC 4 Ver. (Draft) 1.2

2 Cryptographic Components

This section briefly reviews the cryptographic components used in this standard (such as hash
functions and random number generators). Much of the content in this section is presented in
greater detail in [SEC 1, §3]. Some of the content is also available in ANSI standards, such as
[ANSI X9.62].

In this document, the term Approved refers to a cryptographic component specified as (or within) a
current SECG standard, an ANSI X9 standard, or listed in the ANSI X9 registry. The term is used
to specify the requirement that primitives such as hash functions and random number generators
must conform to existing standards in order to be used with ECQV.

2.1 Security Levels

Each of the various cryptographic ingredients to the ECQV scheme has a range of security levels.
Security levels are measured in bits. Essentially, each extra bit of security doubles the amount of
computation (required by a brute-force attack) to compromise security or, roughly equivalently,
halves an adversary’s probability of compromising security. At a security level of 128 bits, an
adversary would require a computation of roughly 2127 or more bit operations to compromise
security with probability greater than 50%.

This version of this Standard only recognizes Approved security levels. The currently Approved
security levels are the following: 80, 112, 128, 192, and 256 bits.

2.2 Hash Functions

Hash functions are used in the ECQV scheme to compute a digest of a certificate that is being
generated or verified. Hash functions are also used in verifiably random elliptic curve domain
parameter generation and validation, and can also be used in random number generators.

The security level associated with a hash function depends on its application. Where collision
resistance is necessary, the security level is at most half the output length (in bits) of the hash
function. Where collision resistance is not necessary, the security level is at most the output length
(in bits) of the hash function. Collision resistance is generally needed for computing message digests
for digital signatures.

The hash functions used by the ECQV scheme shall be Approved hash functions, as Approved in
the X9 Registry Item 00003, Secure Hash Standard (SHS).1 The security level of an Approved hash
function is considered to be at most half its output length for the purposes of this Standard. The
list of hash functions in [SEC 1, §3.5] are also allowed for use with this standard, excluding SHA-1.
The function SHA-1 must not be used with this standard, with two exceptions. Use of SHA-1
is permitted to check verifiably random domain parameters from [SEC 2], when these parameters
were generated using SHA-1. See Section 2 of [SEC 2] for more details. Use of SHA-1 is also

1An application standards that uses ECQV scheme may instead choose another hash function to compute the
certificate digest, but then the application standard becomes responsible for the security of that hash function.

§2 Cryptographic Components Page 3 of 32

2.3 Hashing to Integers Modulo n SEC 4 Ver. (Draft) 1.2

permitted to implement random number generators allowed in Section 2.4, when SHA-1 is required
by the standard specifying the chosen random number generator.

The hash function used for computing the certificate digest shall be a hash function whose security
level is at least the security level of the implementation of ECQV. The hash function used for
verifiably random elliptic domain parameters shall be a hash function whose security level is the
security level of the implementation of the ECQV scheme (with the exception of the verifiably
random elliptic curve domain parameters in [SEC 2] which were generated using SHA-1).

It is expected that this standard will be revised to allow the use of SHA-3, after it is fully specified
in an update to the FIPS 180 Secure Hash Standard.

2.3 Hashing to Integers Modulo n

In many steps of ECQV, an arbitrary length octet string is hashed using a cryptographic hash
function H, and then converted to an integer modulo n. This section specifies the resulting function,
denoted Hn : {0, 1, . . . , 255}∗ → [0, . . . , n−1], which maps arbitrary length octet strings to integers
modulo n.

Input

1. An arbitrary length octet string S.

2. A hash function H hashing arbitrary length octet strings to bit strings of length hashlen.

3. An integer n.

Actions

1. Compute h = H(S), a bit string of length hashlen bits.

2. Derive an integer e from h as follows:

2.1. Set E equal to the leftmost blog2 nc bits of h.

2.2. Convert the bit string E to an octet string E ′, using the Bit-String-to-Octet-String
Conversion specified in [SEC 1].

2.3. Convert the octet string E ′ to an integer e using the Octet-String-to-Integer Conversion
specified in [SEC 1].

Output The integer e, in the interval [0, . . . , n− 1].

Note that if the domain of H is limited to a maximum size, then the domain of Hn is constrained
in the same way.

Page 4 of 32 §2 Cryptographic Components

SEC 4 Ver. (Draft) 1.2 2.4 Random Number Generation

2.4 Random Number Generation

Within this standard, all random values must be generated using an Approved random num-
ber generator having security level at least the security level of the implementation of ECQV.
Random number generators must comply with ANSI X9.82 or NIST Special Publication 800-
90A [NIST 800-90A]. A suitable random number generator is also described in [SEC 1, §3.10].

2.5 Elliptic Curve Domain Parameter Generation and Validation

Elliptic curve domain parameter generation and validation shall comply with [SEC 1].

An implementation which uses both ECQV and other ECC algorithms should use a verifiably
random base point G, as specified in [SEC 2].

Elliptic curve domain parameters consist of six quantities q, a, b, G, n, and h, which are:

• The field size q.

• The elliptic curve coefficients a and b.

• The base point generator G.

• The order n of the base point generator.

• The cofactor h, which is the number such that hn is the number of points on the elliptic
curve.

Additionally a parameter indicating the security level is associated with the domain parameters.
The security level of the domain parameters must meet or exceed the security level of the imple-
mentation of ECQV.

[SEC 2] specifies elliptic curves recommended for use with this standard. Other curves may be used,
provided they can be validated using one of the methods in Section 3.1.1.2 of [SEC 1]. Domain
parameters may be generated with the method given in [SEC 1], and the SEED bit string should
begin with the ASCII encoding of the string “SEC4:ECQV”; the remainder of the bit string may
take an arbitrary value.

3 ECQV Implicit Certificate Scheme

This section specifies the Elliptic Curve Qu-Vanstone implicit certificate scheme (ECQV).

3.1 Overview

The implicit certificate scheme is used by three entities – a Certificate Authority CA, a certificate
requester U , and a certificate processor V . Requester U will obtain an implicit certificate from

§3 ECQV Implicit Certificate Scheme Page 5 of 32

3.2 Prerequisites: ECQV Setup SEC 4 Ver. (Draft) 1.2

CA, certifying U ’s identity, and allowing V to obtain U ’s public key.2

The implicit certificate scheme consists of six parts. These parts will be described in detail in this
section.

ECQV Setup In this step CA establishes the elliptic curve domain parameters, a hash function,
the certificate encoding format, and all parties have selected a random number generator.
CA generates a key pair. All parties must receive authentic copies of CA’s public key and
domain parameters.

Cert Request Requester U must generate a request for a certificate, which is sent to CA. The
cryptographic component of the request is a public key, generated using the same procedure
as CA uses during ECQV Setup.

Cert Generate Upon receiving a certificate request from U , CA confirms U ’s identity, and creates
an implicit certificate. CA sends U the response.

Cert PK Extraction Given an implicit certificate for user U , the domain parameters, and CA’s
public key, the public key extraction algorithm computes U ’s public key.

Cert Reception After receiving a response to his certificate request, U ensures the validity of his
implicitly certified keypair.

Certificate issuance is a two-step process, where the first step is receiving the certificate request
from U , and the second step is to generate a response, containing the certificate. Figure 1 presents
a stylized description of the protocol (informative), to which normative details will be added in
subsequent sections.

Some differences between ECQV and traditional certificates with respect to the binding between
the user’s identity and public key, and the time at which this binding is confirmed by V are
discussed in the commentary of Appendix B.

This standard assumes that each entity shall be bound to a unique identifier (e.g., distinguished
names). This identity string is denoted U, V and CA for the entities U , V and CA, respectively.

3.2 Prerequisites: ECQV Setup

All parties (the certificate authority CA, the certificate owner U , and the certificate processor V)
shall establish the following prerequisites in order to use ECQV.

1. CA has established a set of EC domain parameters for its use with ECQV consisting of q,
a, b, G, (optionally SEED), n and h, along with an indication of the basis used if q = 2m.
The parameters shall have been generated with an Approved method, such as the method
specified in [SEC 1, §3.1], or be Approved parameters, such as those given in [SEC 2]. CA
shall have assurance of the validity of the EC domain parameters (especially if CA did not
generate them himself, see [SEC 1, §3.1]). The EC domain parameters shall provide at least
the desired security level, denoted s.

2In the language of [RFC 2459], U is the subject and V is the relying party.

Page 6 of 32 §3 ECQV Implicit Certificate Scheme

SEC 4 Ver. (Draft) 1.2 3.2 Prerequisites: ECQV Setup

U CA

kU ∈R [1, . . . , n− 1]

RU := kUG

U, RU−−−−→
k ∈R [1, . . . , n− 1]

PU := RU + kG

CertU := Encode(PU , U, ∗)
e := Hn(CertU)

r := ek + dCA (mod n)
r, CertU←−−−−−

e := Hn(CertU)

dU := ekU + r (mod n)

QU := ePU + QCA

Figure 1: Stylized description of the ECQV certificate issuance protocol.

2. CA has selected an Approved hash function with the desired security level s for its use in the
ECQV certificate generation process. (See §2.2 for more detailed requirements on the hash
function.) Let H denote the hash function chosen, and let hashlen denote the length of the
output of the hash function. Section 2.3 describes how the output of H is converted to an
integer modulo n.

3. CA and U have each chosen and initialized an Approved random number generator (as
discussed in §2.4) that offers s-bit security. This random number generator shall be used for
the generation of private keys created during the certificate request and certificate generation
processes.

4. CA has obtained an EC key pair (dCA, QCA) associated with the EC domain parameters
established in Item 1 for use during certificate generation. The key pair shall have been
generated using the key pair generation primitive in [SEC 1, §3.2.1], using the random number
generator established in Item 3. CA shall have assurance of the validity of the key pair and
assurance of the possession of the private key (see [SEC 1]).

5. The certificate owner U , and the certificate processor V have obtained, in an authentic
manner, the elliptic curve domain parameters, the hash function, and QCA, CA’s public key
(established in Item 4). U and V shall have assurance (see [SEC 1]) of:

5.1. the validity of the EC domain parameters,

5.2. the validity of QCA, CA’s public key, and

5.3. possession of the private key, dCA by CA.

§3 ECQV Implicit Certificate Scheme Page 7 of 32

3.3 Certificate Request: Cert Request SEC 4 Ver. (Draft) 1.2

3.2.1 Certificate Encoding Methods

A certificate encoding describes how the information to be included in the certificate should be en-
coded as an octet string. It also specifies what information must be included, and what information
is optional, and any constraints or relationships between portions of the certificate information.

Appendix C describes three certificate encoding methods which may be used with this standard.

Fixed-length Fields is a simple, minimalist encoding which puts bandwidth efficiency before all
other concerns. The certificate consists of a list of fields, each with a fixed length, and the
format is shared amongst all parties. This standard requires only that the public key recon-
struction data PU be one of the fields, leaving the rest of the format open for implementors.

Minimal ASN.1 Encoding Scheme is also designed to be bandwidth-efficient. The ASN.1
specification includes basic required fields, and allows extensions. The basic fields suggested
in this encoding have fixed length, and therefore may also be used with the simpler, fixed-
length format.

X.509-Compliant ASN.1 Encoding is designed to include sufficient information to allow this
ECQV certificate to be re-encoded as a standard X.509 certificate. Of course, since ECQV
does not produce an explicit signature value, the processing logic will differ from an X.509
certificate signed with ECDSA.

3.3 Certificate Request: Cert Request

The certificate requester U , shall use the process below to generate a certificate request.

Input

1. The elliptic curve domain parameters established by CA as determined in §3.2.

2. A string U representing U ’s identity.

Actions

1. Generate an EC key pair (kU , RU) associated with the established elliptic curve domain
parameters using the key pair generation primitive specified in [SEC 1, §3.2.1].

2. Convert RU to the octet string RU using the Elliptic-Curve-Point-to-Octet-String specified in
[SEC 1, §2.3].

Output The key kU and the certificate request (U, RU).

The value RU along with the purported identity U, make up the content of the certificate request.
The value kU is required in future steps (to compute the private key), and must be kept private.
The certificate request should be sent to CA using a method preserving the data integrity of the
message.

Page 8 of 32 §3 ECQV Implicit Certificate Scheme

SEC 4 Ver. (Draft) 1.2 3.4 Certificate Generation Process: Cert Generate

3.4 Certificate Generation Process: Cert Generate

CA shall use the process below to generate a certificate and private key contribution data in response
to a Cert Request from U . It is assumed that CA has received U, and RU in an authenticated manner
and has decided to issue a certificate.

Input

1. The elliptic curve domain parameters established by CA in §3.2.

2. The hash function H selected by CA in §3.2.

3. CA’s private key dCA.

4. A certificate request (U, RU).

5. A certificate encoding method with rules for processing as indicated in §3.2.1.

6. Additional input fields for the certificate, as described in §3.2.1.

Actions

1. Convert the octet string RU to an elliptic curve point RU using the Octet-String-to-Elliptic-
Curve-Point conversion algorithm given in [SEC 1, §2.3.4].

2. Validate RU using the public key validation technique specified in [SEC 1, §3.2.2]. If the
validation primitive outputs ‘invalid’, output ‘invalid’ and stop.

3. Generate an EC key pair (k, kG) associated with the established elliptic curve domain pa-
rameters using the key pair generation primitive specified in [SEC 1, §3.2.1].

4. Compute the elliptic curve point PU = RU + kG.

5. Convert PU to the octet string PU using the Elliptic-Curve-Point-to-Octet-String conversion
specified in [SEC 1].

6. Call the certificate encoding method with the necessary input fields and the octet string PU

as indicated in §3.2.1. If the return value is ‘invalid’ output ‘invalid’ and stop, otherwise set
the result as the certificate CertU .

7. Use the selected hash function to compute e = Hn(CertU), an integer modulo n. Hn is
defined in §2.3.

8. If ePU + QCA = O, where O is the identity element, return to Step 3.

9. Compute the integer r = ek + dCA (mod n).

§3 ECQV Implicit Certificate Scheme Page 9 of 32

3.5 Certificate Public Key Extraction Process: Cert PK Extraction SEC 4 Ver. (Draft) 1.2

Output (r,CertU), where r is the private key contribution data, and CertU is the certificate.

The response from CA may be made public. Additionally, it may be communicated over an insecure
channel, as U may verify that the received information is valid, using the Cert Reception procedure
of Section 3.6. For security, the ephemeral value k must be kept private.

3.5 Certificate Public Key Extraction Process: Cert PK Extraction

The public key bound to the certificate is derived from the certificate using CA’s public key, and is
recovered using the following process. This step does not require any secret information, and may
be performed by any user who knows CertU , and the public parameters output by ECQV Setup.

Input

1. The elliptic curve domain parameters established by CA in §3.2.

2. The hash function H selected by CA in §3.2.

3. CA’s public key QCA as determined in §3.2.

4. The certificate CertU .

Actions

1. Decode the certificate CertU according to the certificate decoding methods and rules. If the
return value is ‘invalid’ then output ‘invalid’ and stop, otherwise an octet string PU will be
returned.

2. Convert PU to a point PU using the Octet-String-to-Elliptic-Curve-Point conversion specified
in [SEC 1, §2.3].

3. Validate PU using the public key validation technique specified in [SEC 1, §3.2.2]. If the
validation primitive outputs ‘invalid’, output ‘invalid’ and stop.

4. Use the selected hash function to compute e = Hn(CertU), an integer modulo n. Hn is
defined in §2.3.

5. Compute the point QU = ePU + QCA.

Output Either ‘invalid’ or a public key QU .

Note that if Cert PK Extraction outputs QU , then QU is valid in the sense of [SEC 1]; it is a point
of order n on the input EC domain parameters.

Page 10 of 32 §3 ECQV Implicit Certificate Scheme

SEC 4 Ver. (Draft) 1.2 3.6 Processing the Response to a Cert Request: Cert Reception

3.6 Processing the Response to a Cert Request: Cert Reception

This routine validates the contents of an implicit certificate and the private key contribution data
issued by CA. The output of Cert PK Extraction, and the private key computed here, form a
key pair. Recall that Cert PK Extraction performs the public key validity check from [SEC 1],
so it is not repeated here. The certificate requester U shall use the process below, upon receipt
of their certificate request response, to compute the private key for the public key output by
Cert PK Extraction, and validate the key pair.

Input

1. The elliptic curve domain parameters established by CA in §3.2.

2. The hash function H selected by CA in §3.2.

3. The private value kU generated by U in §3.3.

4. The output of Cert Generate: the certificate CertU and the private key contribution data, an
integer r.

Actions

1. Compute the public key QU using Cert PK Extraction (or equivalent computations).

2. Use the selected hash function to compute e = Hn(CertU), an integer modulo n.

3. Compute the private key dU = r + ekU (mod n).

4. Compute Q′U = dUG.

Output ‘valid’ and dU if QU is equal to Q′U , and ‘invalid’ otherwise.

3.7 ECQV Self-Signed Certificate Generation Scheme

This section specifies the scheme for generating self-signed implicit certificates. In the self-signed
certificate generation scheme, the user U generates the certificate request and performs the actions
of CA as well, but sets CA’s key pair to (0,O) (the private key is zero and the public key is the
identity element of the elliptic curve group). The certificate must indicate that it is a self-signed
certificate to allow the public key to be extracted correctly.

U shall execute the following steps to create a self-signed implicit certificate.

§3 ECQV Implicit Certificate Scheme Page 11 of 32

3.8 ECQV Self-Signed Implicit Certificate Public Key Extraction SEC 4 Ver. (Draft) 1.2

Input

1. The elliptic curve domain parameters, as determined in §3.2.

2. The hash function H, as determined in §3.2.

3. A certificate encoding method with rules for processing as indicated in §3.2.1.

4. Additional input fields for the certificate, as described in §3.2.1.

Actions

1. Use the key pair generation primitive specified in [SEC 1, §3.2.1] to generate a key pair
(kU ,PU) associated with the established domain parameters.

2. Convert the elliptic curve point PU to the octet string PU using the Elliptic-Curve-Point-to-
Octet-String conversion algorithm given in [SEC 1, §2.3].

3. Call the certificate encoding method with the necessary input fields and the octet string PU

as indicated in §3.2.1. If the return value is ‘invalid’ output ‘invalid’ and stop, otherwise set
the result as the certificate CertU . CertU must indicate that it is self-signed.

4. Use the selected hash function to compute e = Hn(CertU), an integer modulo n.

5. Compute the private key dU = ekU(mod n).

Output If any of the above verifications has failed, then output ‘invalid’ and stop; otherwise,
output ‘valid’, CertU as U ’s self-signed implicit certificate, and dU as the corresponding private
key.

3.8 ECQV Self-Signed Implicit Certificate Public Key Extraction

This section specifies the scheme for extracting the public key from a self-signed implicit certificate.
As with the process for generating a self-signed certificate, extracting the public key follows the
extraction process but with the CA key pair set to (0,O).

Input

1. The elliptic curve domain parameters, as determined in §3.2.

2. The hash function H, as determined in §3.2.

3. A certificate encoding method with rules for processing as indicated in §3.2.1.

4. The self-signed certificate CertU output by the process in §3.7.

Page 12 of 32 §3 ECQV Implicit Certificate Scheme

SEC 4 Ver. (Draft) 1.2 3.8 ECQV Self-Signed Implicit Certificate Public Key Extraction

Actions

1. Decode the certificate CertU according to the certificate decoding methods and rules. If the
return value is ‘invalid’ then output ‘invalid’ and stop, otherwise an octet string PU will be
returned. Ensure that CertU is self-signed, by checking the appropriate field. If CertU is not
self-signed, output ‘invalid’ and stop.

2. Convert PU to a point PU using the Octet-String-to-Elliptic-Curve-Point conversion specified
in [SEC 1, §2.3].

3. Validate PU using the public key validation technique specified in [SEC 1, §3.2.2]. If the
validation primitive outputs ‘invalid’, output ‘invalid’ and stop.

4. Use the selected hash function to compute e = Hn(CertU), an integer modulo n.

5. Compute the point QU = ePU .

Output: If none of the above steps has output ‘invalid’ output the point QU as the public key
corresponding to CertU . Otherwise output ‘invalid’.

§3 ECQV Implicit Certificate Scheme Page 13 of 32

A.2 Acronyms SEC 4 Ver. (Draft) 1.2

A Glossary

This section provides a glossary of the terms, acronyms, and notation used in this document.

Please refer to the glossary of SEC1 [SEC 1] for any term, acronym, or notation not specified in
this section.

A.1 Terms

Terms used in this document include:

(traditional) certificate Information including the public key and identity of an en-
tity, cryptographically signed by a Certificate Authority.
See “certificate” in Section A.1 of SEC1 [SEC 1].

implicit certificate Information including public-key reconstruction data and
the identity of an entity that constitute the certificate of
that entity.

public-key reconstruction
data

An elliptic curve point contained in the implicit certificate,
from which any party with access to CA’s public key can
reconstruct the public key associated with the certificate.

private-key reconstruc-
tion data

Value computed by a CA during the creation of an implicit
certificate. This may be a public value that allows the cer-
tificate requester to compute his private key. Also called the
CA contribution to the private key.

to-be-signed-certificate
data

Data to be included in a certificate or implicit certificate.
This data includes the identity of the certified entity, but
may also include other data, such as the intended use of
the public key, the serial number of the certificate, and the
validity period of the certificate. The exact form of this
data depends on the certificate encoding being used, and is
selected by the CA.

A.2 Acronyms

The acronyms used in this document denote:

ECQV Short for the Elliptic Curve Qu-Vanstone implicit certificate
scheme described in Section 3.

CA The certificate authority.

Page 14 of 32 §A Glossary

SEC 4 Ver. (Draft) 1.2 A.3 Notation

A.3 Notation

The notation adopted in this document is:

CertU Implicit certificate for user U .

PU Public reconstruction data for user U , an elliptic curve point.

PU Public reconstruction data for user U , encoded as an octet
string.

IU To-be-signed-certificate data, non-cryptographic information
about user U , such as their identity and the validity of the cer-
tificate.

RU Certificate request value created by U , an elliptic curve point.

RU Certificate request value created by U , encoded as an octet
string.

QU User U ’s public key.

QCA CA’s public key.

§A Glossary Page 15 of 32

SEC 4 Ver. (Draft) 1.2

B Commentary

The aim of this section is to supply implementers with relevant guidance. However, this section
does not attempt to provide exhaustive information but rather focuses on giving basic information
and including pointers to references which contain additional material. Furthermore, this section
concentrates on supplying information specific to implicit certificates. Extended commentary on
ECC in general – addressing issues like parameter selection and implementation of elliptic curve
arithmetic – can be found in [SEC 1, Appendix B]. This section provides a commentary on the
ECQV implicit certificate scheme. It discusses properties specific to this scheme, and some security
considerations specific to ECQV certificates.

Binding of Identity and Key Pair With all digital certificates that bind an identity to a
public key, there are two aspects of certification to consider. The first is the binding between the
user identity and his public key. The second is assurance that the user has knowledge of his private
key.

The implicit certificate generation algorithm yields a static public key purportedly bound to U
(i.e., purportedly issued by CA). Confirmation that this public key is genuinely bound to U is
only obtained after use of the corresponding key pair (e.g., via execution of an authenticated key
agreement scheme involving this key pair). Thus, with implicit certificates, the binding of an entity
and its public key and knowledge of the private key are verified in unison, during key usage.

This situation differs from ordinary certificates (e.g., X.509 certificates), where the binding between
U and his public key is confirmed by verifying CA’s signature in the certificate. Proof that U knows
the corresponding private key is only obtained during cryptographic usage of the key pair. Some
certificate issuance protocols require U to prove knowledge of his private key to CA. In this case,
another user V has indirect assurance that U knows his private key if the certificate is valid (since
V trusts CA to perform this check when the certificate was issued).

Key Pair Generation With traditional certificates, key pair generation and certificate issuance
are two independent processes. A user can present an arbitrary public key to a CA for certification.
In ECQV the situation is somewhat different. When a user requests an implicit certificate for a
public key from a CA, this public key (and the private key) is a randomized result of the joint
computation by the user and the CA.

This has the direct consequence that once an ECQV implicit certificate is issued, one cannot
get another ECQV implicit certificate for the same public key from a different CA. It is possible
however, to obtain a traditional certificate on an ECQV public key.

Domain Parameters Associated with a Key Pair Recall that U ’s public key associated
with an ECQV implicit certificate CertU is computed as QU = Hn(CertU) · PU + QCA. Since QCA

is defined over a certain elliptic curve, this computation must be performed over the same curve.
This means that the constructed user’s public key is defined over the same elliptic curve as CA’s
public key. Hence, the key pair certified by an ECQV implicit certificate has to be defined over
the same elliptic curve parameters as used by CA. In particular the security level of the certified

Page 16 of 32 §B Commentary

SEC 4 Ver. (Draft) 1.2

key pair is the same as CA’s key pair.

Key-Certificate Confirmation In some applications the subject may need to periodically con-
firm that the private key and the public key reconstructed from a certificate correspond. This check
is done during certificate reception, but it may also be required later. For example, if certificates
are requested in batches by a device manufacturer, and subsequently injected into devices (along
with the private key), the device should check that the injected key and certificate are correct.

If such a confirmation functionality is desired, it is recommended that implementations provide
a routine similar to the example below. Additional checks on the certificate data may also be
performed at this time.

boolean KeyCertConfirmation(secret_key sk, implicit_cert CertU){

public_key QU = cert_PK_Extraction(CertU);

if(sk*G == QU)

return true;

else

return false;

}

Efficiency An advantage of implicit certificates is that, since they contain only the public re-
construction data instead of the subject’s public key and the CA’s signature, they may be smaller
than traditional certificates. We specify three certificate formats in Appendix C.

With respect to computational efficiency, we note that the public key extraction step may be
combined with other operations. For instance, if a protocol requires computation of zQU where
QU is a public key implicitly certified by CertU then instead of computing QU = H(CertU)PU +QCA

followed by zQU (two scalar multiplications) it may be faster to compute zH(CertU)PU + zQCA

(using fast scalar multiplication/exponentiation techniques).

Demonstrating Knowledge of the Secret Key During Certificate Issuance When an
entity U requests a traditional certificate for a public key, U should prove to the CA it knows the
corresponding private key. This is to prevent U from choosing an arbitrary public key, that may
already belong to another user, and have it certified. This situation is clearly undesirable (and
may even lead to security problems).

With implicit certificates this proof is unnecessary, as there is no public key before the certificate is
issued. Further, U has no control over the final value of his public key, due to the CA’s contribution,
making it impossible for U to cause the confusion described above.

Unforgeability Unlike traditional certificates, an implicit certificate does not contain a digital
signature. In fact, one could simply choose an arbitrary identity I and a random value to form a
certificate. Together with the public key of a CA, this generates a public key for the entity identified
by I. However, if one constructs an implicit certificate in such a way, i.e., without interacting with

§B Commentary Page 17 of 32

SEC 4 Ver. (Draft) 1.2

the CA, it is infeasible to compute the private key that corresponds to the public key generated by
the certificate. See [BGV01] for a security analysis of ECQV.

Another difference between traditional certificates and implicit certificates is that when presented
with a valid traditional certificate, one knows that the certificate belongs to someone. A valid
certificate containing the certificate data string IU is a proof that the CA signed this certificate
for U , and also that U knows the private key corresponding to the public key included in the
certificate. One does not have this guarantee with implicit certificates. It is trivially possible to
construct an implicit certificate CertU such that the private key corresponding to the public key
computed as QU = Hn(CertU) · PU + QCA is unknown.

This fact suggests a denial-of-service type attack, where a party V is flooded with protocol requests
using “fake” implicit certificates. The fact that the private key of the fake certificate is unknown
is only revealed after V has performed most of the protocol. Of course, a similar attack can be
launched in a system using traditional certificates. In this case, the attacker would flood a party
with various certificates belonging to other entities. The certificates are valid, but the attacker
does not know the private key of the corresponding public key.

Composability Composition of ECQV with other primitives requires care. By composition, we
mean using the implicit public key computed with Cert PK Extraction with another cryptographic
primitive. For instance, using a validated ECQV public key as an ECDSA verification key is known
to be secure, provided the signed message is not the same as the certificate, i.e., verifiers should
not accept a signature from U on the message CertU . See the analysis of ECQV-certified ECDSA
by Brown et al. [BCV09]. Composition of ECQV with other primitives from SEC1 such as key-
agreement (ECMQV) and encryption (ECIES) have not been formally analyzed in the literature,
however no attacks against these compositions are known either.

Certificate Chains Another type of composition of ECQV is with itself, in a certificate chain.
Certificate chains are often used in public-key infrastructure to form hierarchical certification au-
thorities. In a chain, an ECQV key pair (belonging to a CA or sub-CA) is used to issue ECQV
certificates (to a sub-CA or end entity).

The following outlines an attack against ECQV chains of length four or more, or chains of length
three composed with a digital signature, is possible. The formulae for reconstructing the public
keys from each certificate can combined into a single formula for reconstructing the final public key
in the chain. An equation can then be formed by equating this combined formula to the formula
for the public in terms of the private key. Or, when one wishes to verify a signature, the signature
verification equation can be included in the combined equation instead. The problem of finding a
solution to the combined equation can be interpreted as instance of Wagner’s generalized birthday
problem.

Recall that the generalized birthday problem is to find a sequence of independent pseudorandom
group elements summing to zero. The case of a sum of two values can interpreted as finding a
collision in a pseudorandom function. One might expect the fastest algorithm to be exhaustive
search. The collision problem can be solved faster than one might expect because of the birthday
surprise paradox.

Page 18 of 32 §B Commentary

SEC 4 Ver. (Draft) 1.2

Wagner’s tree algorithm solves the generalized birthday problem when the group has certain addi-
tional structure, such as ability to compare elements that are preserved under the group operation.
As with collision search algorithm, Wagner’s tree algorithm is faster than exhaustive search. In
fact, as the number of terms in the sum increase, Wagner’s algorithm becomes even faster.

Wagner’s tree algorithm can be applied to forge certificate chains where the private key of the last
certificate is known by the attacker, or to forge a signature signed by the end entity of a certificate
chain. In this latter case the private key need not be known. In both these cases the verifying
equation can be viewed as equations in the private key space, which is an ordinary modular group
with ordering preserved under the group operation.

When either the length of the certificate chain is four, or when the certificate chain is three and a
signature by the last entity named in the chain is to be forged, Wagner’s algorithm is faster than
solving the discrete logarithm problem directly. Specifically, in this case Wagner’s algorithm takes
about 3

√
n group operations where n is the order of the group, whereas the best known algorithms

for solving the discrete logarithm take about
√
n group operations.

A more detailed description of this attack will be published and made available on the SECG
website.

Wagner’s tree algorithm is rather sensitive to the conditions of the underlying problem, such as the
independence of the terms in the sum. This leads to several choices of additional actions likely to
prevent this certificate chain forgery attack. Further research is needed to assess the security of a
preferred mitigation suitable for standardization. Ideally, this research will lead to security proofs
of chaining modes for ECQV.

If implementers utilize certificate chains of length three or more it is recommended that they
provide counter measures that thwart these generalized birthday attacks.

§B Commentary Page 19 of 32

SEC 4 Ver. (Draft) 1.2

C Representation of ECQV Certificate Structures

Here we specify the encoding and decoding operation primitives that may be used to generate
ECQV certificates and process ECQV certificates. We provide three options, a simple fixed-length
encoding, a minimal ASN.1 encoding, and an X.509-like ASN.1 encoding. Implicit certificates
are specifically defined to reduce bandwidth requirements, therefore creating highly extensible and
verbose encoding methods are counterproductive to the goals of the scheme. The schemes defined
indicate rules associated with elements of the certificate. These rules typically enforce public key
infrastructure policies, such as key-usage, validity periods, issuer identifier, subject identifier, etc.

C.1 Fixed-Length Fields

The fixed-length fixed-fields encoding and decoding methods uses concatenation of a fixed and
agreed number of octet string fields of fixed length. We do not specify fields to be included.
This is left to individual implementations. The fixed-length fixed-fields encoding may easily be
customized to a particular application to include only those fields which are necessary for the
application, leading to a compact certificate. The fields given in the minimal encoding scheme of
§C.2 may also be used with this encoding, as they have fixed length.

Prerequisites

The entities using this method shall agree on the following choices for the method:

• A number of fields f .

• The octet length of each field, denoted leni for i = 1 to f .

• The index i, of the field that will contain the encoded public key reconstruction data (an
octet encoded elliptic curve point).

• Validity rules for each of the field elements.

Fixed-Length Fixed-Fields Encoding Operation

Input The input to the encoding operation is:

• Octet strings F1, F2, . . . , Ff ,

• Fi = PU an octet encoded elliptic curve point for some i in [1, . . . , f].

Actions Compute the ECQV certificate as follows:

• Verify each field Fi is of length leni and if not return ‘invalid’ and stop.

Page 20 of 32 §C Representation of ECQV Certificate Structures

SEC 4 Ver. (Draft) 1.2 C.2 Two ASN.1 Encodings: Minimal and X.509-Compliant

• Validate that each field satisfies the rules specified in the prerequisites, and if any fail return
‘invalid’ and stop.

• Create the certificate Cert = F1||F2|| . . . ||Ff .

Output The octet string Cert or ‘invalid.’

Fixed-Length Fixed-Fields Decoding Operation

Input The input to the decoding operation is:

• The certificate Cert.

Actions Decode the certificate as follows:

• Verify that the length of Cert is equal to len1 + len2 + . . . + lenf , if not return ‘invalid’ and
stop.

• Parse the certificate into pre-defined length segments Cert = F1||F2|| . . . ||Ff .

• Validate that each field satisfies the rules specified in the prerequisites, and if any fail return
‘invalid’ and stop.

Output The field values F1, . . . Ff , where one of Fi = PU, an octet-encoded public key recon-
struction value.

C.2 Two ASN.1 Encodings: Minimal and X.509-Compliant

We first provide two ASN.1 encodings. The first is called the minimal encoding scheme (MES).
The MES is designed to be as compact as possible, and is a list of basic certificate fields which are
common to many applications. The fields in the MES are fixed length, which means the fields in
this format may be encoded using the simple encoding of §C.1, however, for greater portability it
may also be encoded with the ASN.1 syntax provided in this section.

The second format we describe is an X.509 compliant format. The X.509 certificate format is
given in [RFC 2459]. This format is larger, but allows ECQV certificates to be parsed as X.509
certificates. We also give a mapping between the two formats which allows a MES encoded ECQV
certificate to be re-encoded as an X.509 encoded ECQV certificate. Re-encoding in the other
direction is possible, however, since the X.509 format allows more information to be stored in the
certificate, some information may be lost when re-encoding. Put another way, the mapping of
ECQV certificates from MES to X.509 encodings is one to many, because of the additional fields
in the X.509 encoding. The ASN.1 module specifying the encodings of ECQV certificates is given
below.

In both ASN.1 encoded formats, to indicate that a certificate is self-signed, the issuerID (or issuer)
field should be set to zero.

§C Representation of ECQV Certificate Structures Page 21 of 32

C.2 Two ASN.1 Encodings: Minimal and X.509-Compliant SEC 4 Ver. (Draft) 1.2

-- ---------------

-- ECQV certificate format: minimal encoding scheme (MES)

-- ASN.1 is used to describe the format, but these fields

-- could also be used with the fixed-length field encoding.

-- The times are represented using UNIX time, i.e., # of seconds

-- since the unix epoch: http://en.wikipedia.org/wiki/Unix_time

-- The validFrom field uses 40-bit values to avoid problems in

-- 2038 (when 32-bit values won’t be enough).

-- ---------------

ANSI-X9-YY{iso(1) member-body(2) us(840) 10045 module(0) 2}

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

ansi-X9-YY OBJECT-IDENTIFIER ::= {iso(1) member-body(2) us(840) 10045}

ECQVCertificate ::= SEQUENCE {

type MESType DEFAULT t1,-- one byte, see below

serialNumber OCTET STRING (SIZE (8)),

curve Curve,-- named curve, see below

hash Hash,

issuerID OCTET STRING (SIZE (8)),

validFrom OCTET STRING (SIZE (5)),-- 40-bit Unix time

validDuration OCTET STRING (SIZE (4)),-- 32-bit # of seconds

subjectID OCTET STRING (SIZE (8)),

usage KeyUsage, -- one byte, described below

pubKey OCTET STRING,

pathLenConstraint INTEGER (0..255) OPTIONAL,

...,

-- Extensions:

algorithm[1] AlgorithmIdentifier OPTIONAL,

email[2] IA5String (SIZE (0..128)) OPTIONAL

}

-- Notes:

-- * The 32-bit # of seconds allows certs to be valid for up to 136 years. If

-- validDuration = 2^32 -1 (the maximal unsigned 32-bit integer) then the

-- certificate is valid forever, i.e., it has no expiry

-- * The subjectID could be a MAC address (they are 48-bit values, and the

-- OUI is the least significant three octets)

-- * The issuerID is an 8 byte identifier for a CA, assumed to be associated

-- with the CA’s public key by subjects and relying parties out of band.

-- * If extensions are used, type MUST be t2 and the extensions algorithm and

-- email MUST be present.

-- * The size of pubKey varies depending on the curve chosen. Note this is only

-- the public key reconstruction data.

-- * The algorithm extension is used to specify what the user’s public key will

Page 22 of 32 §C Representation of ECQV Certificate Structures

SEC 4 Ver. (Draft) 1.2 C.2 Two ASN.1 Encodings: Minimal and X.509-Compliant

-- be used for (e.g., ecdsa-with-sha256)

-- * The email extension can be null terminated instead of fixed length, and be

-- a maximum of 128 bytes.

-- * The total size of a type 1 certificate is: 37 bytes + size of the public key

-- reconstruction value

-- The type of the certificate indicates whether the certificate contains

-- extensions. There are two possibilities:

-- Type 2: |required fields|extensions|

-- Type 1: |required fields|

MESType ::= INTEGER {

t1(0), -- type 1: no extension(s),

t2(1), -- type 2: with extension(s)

}

-- Curves for use with ECQV. Includes all curves listed in SEC2. See Section 2.5.

Curve ::= INTEGER { secp192k1(0), secp192r1(1), secp224k1(2),

secp224r1(3), secp256k1(4), secp256r1(5), secp384r1(6), secp512r1(7),

sect163k1(8), sect163r1(9), sect233k1(10), sect233r1(11), sect239k1(12),

sect283k1(13), sect283r1(14), sect409k1(15), sect409r1(16), sect571k1(17),

sect571r1(18) }

-- Hash identifiers.

-- Note id-aesmmo256 added SEC4 version 1.1.

Hash ::= INTEGER { id-sha224(0), id-sha256(1), id-sha384(2),

id-sha512(3), id-aesmmo128(8)}

-- The KeyUsage bit string is a bit field, where bits are asserted

-- in indicate valid uses of the key, as in RFC 5280.

-- See RFC 5280, Section 4.2.1.3 for more details.

KeyUsage ::= BIT STRING {

digitalSignature (0),

nonRepudiation (1),

keyEncipherment (2),

dataEncipherment (3),

keyAgreement (4),

keyCertSign (5),

cRLSign (6),

-- the last bit in the byte is always zero (7)

}

-- ---------------

-- X.509 ECQV certificate structures

-- ---------------

-- This certificate format is compliant with x.509, and corresponds to a MES

-- encoded ECQV certificate The descripition of X.509 is here:

-- http://www.ietf.org/rfc/rfc5280.txt

-- ---------------

§C Representation of ECQV Certificate Structures Page 23 of 32

C.2 Two ASN.1 Encodings: Minimal and X.509-Compliant SEC 4 Ver. (Draft) 1.2

-- OIDs required: ecqv-with-sha224, ecqv-with-sha256, ecqv-with-sha384,

-- ecqv-with-sha512, ecqv-with-aes-mmo

-- signatureAlgorithm is the CA’s signing algorithm (always ECQV-something).

ECQV-X509-Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,

}

-- This is the certificate data to be signed. Notes:

-- * versions have the same interpretation as in rfc5280

-- * signature denotes the CA’s signing algorithm. MUST be the same as

-- signatureAlgorithm above. The valid algorithm identifiers are the

-- OIDs listed above.

-- * subjectPublicKeyInfo contains the public key reconstruction data

-- * extensions can be any valid X.509 extension. If present, version

-- MUST be v3

TBSCertificate ::= SEQUENCE {

version Version DEFAULT v1,

serialNumber OCTET STRING,

signature AlgorithmIdentifier,

issuer Name,-- corresponds to issuerID in minimal encoding

validity Validity,-- as in rfc5280 (X.509)

subject Name,-- corresponds to subjectID in minimal encoding

subjectPublicKeyInfo SubjectPublicKeyInfo,

extensions[3] Extensions OPTIONAL

}

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

notBefore Time,

notAfter Time

}

-- This is the way time is done in PKIX (from rfc 5280). Some details of the

-- time conversion are given in the MES->X.509 mapping below.

Time ::= CHOICE {

utcTime UTCTime,

generalTime GeneralizedTime

}

Page 24 of 32 §C Representation of ECQV Certificate Structures

SEC 4 Ver. (Draft) 1.2 C.2 Two ASN.1 Encodings: Minimal and X.509-Compliant

UniqueIdentifier ::= BIT STRING

-- The AlgorithmIdentifier specifies the algorithm the user will use their

-- keypair for. Note the parameters MUST be empty, since the user’s key

-- inherits the paramters from the CA (No equivalent in minimal encoding.)

-- Note that subjectPublicKey is the public key reconstruction data P_U,

-- NOT the public key.

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey ECPoint

}

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING

}

-- This is similar to the x.509 ASN.1 encoding of the algorithm field,

-- but drops the parameters field, since the subjects’ public key

-- can only be used with the same parameters as the CA.

AlgorithmIdentifier ::= SEQUENCE {

algorithm OBJECT IDENTIFIER,

}

-- The following elliptic curve structures are included for completeness.

-- Named Elliptic Curves in ANSI X9.62.

ansi-X9-62 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 10045 }

ellipticCurve OBJECT IDENTIFIER ::= { ansi-X9-62 curves(3) }

-- Elliptic Curve parameters may be specified explicitly, specified implicitly

-- through a "named curve", or inherited from the CA. Note that explicitly

-- specified parameters are not supported by the MES therefore, X.509 ECQV

-- certificates with explicitly specified parameters cannot be encoded using the

-- MES format.

EcpkParameters ::= CHOICE {

ecParameters ECParameters,

namedCurve OBJECT IDENTIFIER,

implicitlyCA NULL

}

-- Elliptic curve parameters

ECParameters ::= SEQUENCE {

version ECPVer,

§C Representation of ECQV Certificate Structures Page 25 of 32

C.2 Two ASN.1 Encodings: Minimal and X.509-Compliant SEC 4 Ver. (Draft) 1.2

fieldID FieldID,

curve Curve,

base ECPoint, -- Base point G

order INTEGER, -- Order n of the base point

cofactor INTEGER OPTIONAL -- The integer h = #E(Fq)/n

}

FieldID ::= SEQUENCE {

fieldType OBJECT IDENTIFIER,

parameters ANY DEFINED BY fieldType

}

ECPVer ::= INTEGER {ecpVer1(1)}

ECPoint ::= OCTET STRING

-- X.501 Name type

Name ::= CHOICE {

rdnSeq RDNSequence

}

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName ::=

SET OF AttributeTypeAndValue

AttributeTypeAndValue ::= SEQUENCE {

type OBJECT IDENTIFIER,

value [0] EXPLICIT ANY DEFINED BY type

}

DirectoryString ::= CHOICE {

teletexString TeletexString (SIZE (1..MAX)),

printableString PrintableString (SIZE (1..MAX)),

universalString UniversalString (SIZE (1..MAX)),

utf8String UTF8String (SIZE (1..MAX)),

bmpString BMPString (SIZE (1..MAX))

}

-- _________________________________

-- MES and X.509 field equivalence

-- Here we describe how to encode a MES encoded certificate as an X.509

-- certificate (and vice-versa, the mapping given here is 1:1. Of course, the

-- X.509 may contain additional fields.) Field by field correspondence is given.

-- Note there is no loss of time precision since X.509 times MUST include

-- seconds and MUST NOT include fractional seconds.

Page 26 of 32 §C Representation of ECQV Certificate Structures

SEC 4 Ver. (Draft) 1.2 C.3 Alternative ASN.1 Encoding: The M2M Format

-- _________________________________

-- MES field X.509 field

-- --------- -----------

-- type tbsCertificate.version = v3

-- Note: version must always be v3, since the KeyUsage field is a basic field

-- in MES, but extension in X.509

-- serialNumber tbsCertificate.serialNumber

-- curve tbsCertificate.signature.ecParams.curve

-- hash given by the name of the AlgorithmIdentifier

-- tbsCertificate.signature

-- issuerID tbsCertificate.issuer (note it uses the Name type)

-- validFrom tbsCertificate.Validity

-- validDuration

-- Note: Validity.notBefore = validFrom,

-- Validity.notAfter = notBefore + validDuration.

-- Also note: MES encodes time as unix time, and X.509 uses the Time type.

-- If validDuration = 2^32 -1 (the maximal unsigned 32-bit integer) then the

-- certificate is valid forever, i.e., it has no expiry.

-- subjectID tbsCertificate.subject (note it uses the Name type)

-- usage tbsCertificate.usage (Note: this is an X.509 extension)

-- pubKey tbsCertificate.subjectPublicKeyInfo.subjectPublicKey

-- *** signatureAlgorithm = ecqv-with-hash

-- Note: both signatureAlgorithm and tbsCertificate.signature should be the same.

-- algorithm subjectPublicKeyInfo.algorithmIdentifier

-- email X.509 email extension (version must be v3)

END

C.3 Alternative ASN.1 Encoding: The M2M Format

Following is another alternative certificate format between the extremes of X.509 and MES, suit-
able for both ECQV and digitally signed certificates. It was developed because X.509 certificates
[RFC5280] tend to be overly verbose for low bandwidth ECC-based applications but MES is unsuit-

§C Representation of ECQV Certificate Structures Page 27 of 32

C.3 Alternative ASN.1 Encoding: The M2M Format SEC 4 Ver. (Draft) 1.2

able for many such applications since it cannot support the name forms and certificate extensions
that the applications require. This format is called the Machine-to-Machine (M2M) format. It is
essentially a subset of X.509 which generally requires many fewer bytes than X.509 but also has
the flexibility to include optional fields that applications commonly require.

With this format the X.509 model is restricted (or subsetted) as follows:

• DN names are limited to the RFC 5280 mandatory attributes plus others in common use,
as follows: country, organization, organizational unit, distinguished name qualifier, state or
province name, common name, serial number, locality, domain component. Only one of
each attribute type is permitted, with no more than four attributes total, and no multi-level
names. Two other optional attribute types have also been added: an OBJECT IDENTIFIER

name component and an OCTET STRING name component, both of which are considered
potentially useful for device identifiers but which are not compatible with X.509 DNs.

• DN character encodings are limited to one string type, usually UTF8String (which a profile
might limit to IA5 characters).

• Modest length constraints are stipulated for all DN attributes.

• Criticality flags are generally eliminated from extensions, with the assumption that criticality
is implied by semantics.

• For end-entity certificates, adaptations of the following X.509 extensions are optionally built
in: issuer key id, subject key id, key usage (first 7 bits only), certificate policies (one OID, no
qualifiers), subject alternative name, issuer alternative name, extended key usage (one OID),
authority information access (URI for OCSP responder only).

• For CA-certificates, an adaptation of the following X.509 extension is optionally built in:
basic constraints.

• There is a catch-all option to accommodate any standard X.509 extension but, since this
mechanism is comparatively inefficient, its use is discouraged.

The following size reduction methods are also applied to the X.509 model:

• For applications where a certificate is always accompanied in its transmission by its superior
certificate, the issuer, CA algorithm, and CA algorithm parameters fields can be omitted from
the transmitted form of the certificate and imported from the superior certificate for certificate
validation purposes. For this reason these fields are made optional in the syntax. Therefore,
a certificate may have two variants: the full (to-be-signed) form and the transmitted form.
Note that this mechanism is not available in the certificate immediately subordinate to the
root, since fields must not be imported from the root.

• This format uses UNIX time rather than ASN.1 time types in the same way as the MES
format to represent validity period.

• The redundant algorithm identifier is dropped from the X.509 certificate outer structure.

Page 28 of 32 §C Representation of ECQV Certificate Structures

SEC 4 Ver. (Draft) 1.2 C.3 Alternative ASN.1 Encoding: The M2M Format

• The BIT STRING type is avoided in favor of the OCTET STRING type to avoid an unnecessary
byte per instance.

Unlike the formats in Appendix C.2, to indicate that a certificate is self-signed, the issuer and
subject name fields are set to the same value (for consistency with RFC 5280).

--

-- Machine-to-Machine certificate format Ver WF 26Ja14

--

M2M-Certificate-Definition

{iso(1) identified-organization(3) trustpoint(186) asn1-modules(5) m2m-certificate(0)}

-- Structure Must be DER encoded

DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

Certificate ::= [APPLICATION 20] IMPLICIT SEQUENCE {

tbsCertificate TBSCertificate,

cACalcValue OCTET STRING -- Contains signature for a signed

-- cert or pub key deriv value for an ECQV cert

}

-- The APPLICATION 20 tag is intended to make the M2M format

-- apparent by inspecting the first byte of the encoding

TBSCertificate ::= SEQUENCE {

version INTEGER {v1(0) } DEFAULT v1,

serialNumber OCTET STRING (SIZE (1..20)),

cAAlgorithm OBJECT IDENTIFIER OPTIONAL, -- Identifies

-- algorithm, hash function & (optional) curve.

-- Required for signature verification but may

-- be omitted from the transmitted cert and

-- filled in from the pubKey Algorithm of the

-- superior cert (but not root cert)

cAAlgParams OCTET STRING OPTIONAL,

-- Required for signature verification unless

-- absent in both the transmitted cert and the

-- superior cert pKAlgParams field. Fill

-- in from superior cert pKAlgParams field if

-- needed (but not root cert)

issuer Name OPTIONAL, -- Required for signature

-- verification but may be omitted from the

-- transmitted cert and filled in from the

-- subject field of the superior cert (but not

-- root cert)

validFrom OCTET STRING (SIZE (4..5)) OPTIONAL,

-- Unix time. If omitted no validity specified

§C Representation of ECQV Certificate Structures Page 29 of 32

C.3 Alternative ASN.1 Encoding: The M2M Format SEC 4 Ver. (Draft) 1.2

validDuration OCTET STRING (SIZE (1..4)) OPTIONAL,

-- # of seconds. If omitted no expiry specified

subject Name,

pubKeyAlgorithm OBJECT IDENTIFIER OPTIONAL,

pKAlgParams OCTET STRING OPTIONAL,

pubKey OCTET STRING OPTIONAL, -- Omit for an ECQV cert

authKeyId OCTET STRING OPTIONAL,

subjKeyId OCTET STRING OPTIONAL,

keyUsage OCTET STRING (SIZE (1)) OPTIONAL, -- Critical

-- One byte containing a bit string, as described below.

basicConstraints INTEGER (0..7) OPTIONAL, -- If absent this

-- is an end-entity cert; max intermed path len for CA cert

certificatePolicy OBJECT IDENTIFIER OPTIONAL,

subjectAltName GeneralName OPTIONAL,

issuerAltName GeneralName OPTIONAL,

extendedKeyUsage OBJECT IDENTIFIER OPTIONAL,

authInfoAccessOCSP IA5String OPTIONAL, -- OCSP responder URI

cRLDistribPointURI IA5String OPTIONAL, -- CRL distrib pt URI

x509extensions X509Extensions OPTIONAL,

...

}

Name ::= SEQUENCE SIZE (1..4) OF AttributeValue

AttributeValue ::= CHOICE {

country PrintableString (SIZE (2)),

organization UTF8String (SIZE (1..32)),

organizationalUnit UTF8String (SIZE (1..32)),

distinguishedNameQualifier PrintableString (SIZE (1..32)),

stateOrProvince UTF8String (SIZE (1..4)),

locality UTF8String (SIZE (1..32)),

commonName UTF8String (SIZE (1..32)),

serialNumber PrintableString (SIZE (1..32)),

domainComponent IA5String (SIZE (1..32)),

registeredId OBJECT IDENTIFIER,

octetsName OCTET STRING (SIZE (1..8))

}

X509Extensions ::= SEQUENCE OF Extension

Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,

criticality BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING

}

GeneralName ::= CHOICE {

rfc822Name IA5String (SIZE (1..128)),

Page 30 of 32 §C Representation of ECQV Certificate Structures

SEC 4 Ver. (Draft) 1.2 C.3 Alternative ASN.1 Encoding: The M2M Format

dNSName IA5String (SIZE (1..128)),

directoryName Name,

uniformResourceIdentifier IA5String (SIZE (1..128)),

iPAddress OCTET STRING (SIZE (1..16)),

--4 octets for IPV4, 16 octets for IPV6

registeredID OBJECT IDENTIFIER

}

-- Notes:

-- * The times are represented using UNIX time, i.e. # of seconds

-- since the unix epoch: http://en.wikipedia.org/wiki/Unix_time

-- The validFrom field permits 40-bit values to avoid problems in

-- 2038 (when 32-bit values won’t be enough).

--

-- The keyUsage field conveys a single octet equal to the

-- second octet of the DER encoding of the following BIT STRING

-- KeyUsage ::= BIT STRING {

-- digitalSignature (0),

-- nonRepudiation (1),

-- keyEncipherment (2),

-- dataEncipherment (3),

-- keyAgreement (4),

-- keyCertSign (5),

-- Use keyCertSign also for an ECQV cert issuer

-- cRLSign (6)

-- the last bit in the byte is always zero (7)

END

§C Representation of ECQV Certificate Structures Page 31 of 32

References SEC 4 Ver. (Draft) 1.2

D References

[ANSI X9.62] ANS X9.62:2005: Public Key Cryptography for the Financial Services Industry:
The Elliptic Curve Digital Signature Algorithm (ECDSA), 2005.

[NIST 800-90A] E. Barker and J. Kelsey. SP 800-90A: Recommendation for Random Number
Generation Using Deterministic Random Bit Generators. NIST, Jan. 2012. http:
//csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf.

[RFC 2459] R. Housley, W. Ford, W. Polk and D. Solo. RFC 2459: Internet X.509
Public Key Infrastructure Certificate and CRL Profile. IETF, 1999. www.ietf.

org/rfc/rfc2459.txt.

[SEC 1] SECG. SEC 1: Elliptic Curve Cryptography, May 2009. Version 2.0. www.secg.
org.

[SEC 2] ———. SEC 2: Recommended Elliptic Curve Domain Parameters, Jan. 2010.
Version 2.0. www.secg.org.

[BCV09] D. Brown, M. Campagna and S. Vanstone. Security of ECQV-certified
ECDSA against passive adversaries. Cryptology ePrint Archive Report 2009/620,
IACR, 2009.

[BGV01] D. Brown, R. Gallant and S. Vanstone. Provably secure implicit certificate
schemes. In P. F. Syverson (ed.), Financial Cryptography — FC 2001, LNCS
2339, pp. 156–165. Springer, Feb. 2001.

Page 32 of 32 §References

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
www.ietf.org/rfc/rfc2459.txt
www.ietf.org/rfc/rfc2459.txt
www.secg.org
www.secg.org
www.secg.org

	Introduction
	Overview
	Aim
	Compliance
	Document Evolution
	Intellectual Property

	Cryptographic Components
	Security Levels
	Hash Functions
	Hashing to Integers Modulo n
	Random Number Generation
	Elliptic Curve Domain Parameter Generation and Validation

	ECQV Implicit Certificate Scheme
	Overview
	Prerequisites: ECQV Setup
	Certificate Encoding Methods

	Certificate Request: Cert_Request
	Certificate Generation Process: Cert_Generate
	Certificate Public Key Extraction Process: Cert_PK_Extraction
	Processing the Response to a Cert_Request: Cert_Reception
	ECQV Self-Signed Certificate Generation Scheme
	ECQV Self-Signed Implicit Certificate Public Key Extraction

	Glossary
	Terms
	Acronyms
	Notation

	Commentary
	Representation of ECQV Certificate Structures
	Fixed-Length Fields
	Two ASN.1 Encodings: Minimal and X.509-Compliant
	Alternative ASN.1 Encoding: The M2M Format

	References

